L’IA recrute pour vous

L’utilisation des services d’ensembles de règles protège-t-elle contre les préjugés ou les améliore-t-elle? Cette question essentielle est apparue comme un motif d’inquiétude pour les partisans de la technologie ainsi que pour ses sceptiques, mais il est plus compliqué d’y parvenir que de donner la bonne réponse. L’emploi n’est presque jamais un choix individuel, mais plutôt l’aboutissement d’une série de choix plus petits et séquentiels. Les techniques jouent des emplois distincts tout au long de cette technique: certaines orientent les offres d’emploi vers un certain nombre de candidats potentiels, tandis que d’autres désignent des personnes indirectes pour le recrutement. L’analyse prédictive des instruments et la cote de crédit reprennent, et aident les superviseurs à employer à examiner les compétences des prospects de manière nouvelle, en utilisant les deux informations classiques et uniques. Beaucoup pensent que les algorithmes peuvent aider les décisionnaires humains à prévenir leurs propres préjugés en ajoutant de la persistance à l’approche de recrutement. Mais les algorithmes apportent de nouveaux dangers. Ils sont capables de dupliquer des biais institutionnels et antiques, amplifiant les inconvénients cachés dans les détails de données tels que la fréquentation universitaire ou les évaluations d’analyse de performance.

Même si des règles éliminent une part de subjectivité de votre procédure de recrutement, les êtres humains continuent d’être fortement associés aux choix d’embauche définitifs. Les arguments qui font que les techniques «objectives» sont aussi justes et plus précises que les humains faillibles oublient de bien savoir que, dans la plupart des cas, jouent également un rôle. Pour comprendre les préjugés dans la sélection des algorithmes et les moyens de les minimiser, nous devrons explorer la façon dont la technologie prédictive fonctionne à chaque changement d’application de votre approche. Même s’ils partagent fréquemment une partie de l’unité d’apprentissage, les ressources utilisées précédemment dans le processus peuvent être fondamentalement différentes de celles utilisées par la suite. Même les instruments qui semblent effectuer exactement le même processus pourraient dépendre de plusieurs types de données, ou présenter des prophéties de manière très différente. Notre analyse de l’équipement prédictif dans le cadre de la méthode de recrutement vous aide à expliquer exactement ce que font les «algorithmes de recrutement» et comment et où des préjugés peuvent entrer dans la méthode. Malheureusement, nous avons découvert que la plupart des ensembles de règles d’embauche dériveraient au détriment des préjugés. Même si leur contribution probable à la réduction des préjugés interpersonnels ne doit pas être minimisée, seuls des outils permettant de gérer de manière proactive des disparités encore plus profondes vous donneront l’espoir que l’innovation technologique prédictive pourrait aider à promouvoir les garanties, séminaire au lieu de les atténuer. L’approche d’emploi commence effectivement juste avant qu’un demandeur d’emploi soumette un logiciel.

Tout au long de la phase de «recrutement» ou de recrutement, la technologie prédictive aide à annoncer les ouvertures de carrière, à alerter les demandeurs d’emploi sur les placements éventuellement souhaitables et à offrir aux recruteurs des perspectives d’activités concrètes. Pour faire venir des individus, séminaire de nombreux employeurs utilisent des systèmes d’annonces algorithmiques et des tableaux de tâches pour arriver probablement aux demandeurs d’emploi les plus «pertinents». Ces systèmes, qui assurent aux employeurs une consommation plus importante des budgets de dépenses d’emploi, font généralement des prophéties très superficielles: ils ne prévoient pas qui peut réussir dans la partie, mais qui est le plus susceptible de cliquer simplement sur cette offre d’emploi. Ces prévisions peuvent conduire les annonces de tâches à être diffusées d’une manière qui prenne en charge les stéréotypes sexuels et raciaux, même si les organisations n’ont pas ce genre d’intention. Lors de recherches menées conjointement avec des collègues de Northeastern School et de USC, nous avons notamment découvert que des publicités très ciblées sur Facebook ou Twitter pour des placements dans des caisses d’épiceries étaient en réalité montrées à 85% de femmes, bien que Les entreprises ont visité une foule composée à 75% de couleur noire. Cela peut être une situation quintessentielle d’un algorithme reproduisant les biais de la vie réelle, sans la nécessité d’une implication de l’homme. D’autre part, des conseils de travail individualisés, tels que ZipRecruiter, tentent de comprendre instantanément les préférences personnelles des recruteurs et utilisent ces estimations pour recruter des personnes comparables.

À l’instar de Facebook ou de Twitter, ces techniques de recommandation professionnelles sont conçues pour atteindre et reproduire les habitudes dans les actions des clients, en mettant à jour les estimations de manière dynamique à mesure que les employeurs et les demandeurs d’emploi se connectent. Si la méthode remarque que les recruteurs affligent se connectent plus fréquemment avec des hommes de couleur blanche, elle peut très bien localiser les mandataires pour tous ces attributs (comme se faire appeler Jared ou jouer activement à la crosse au lycée) et reproduire cette routine. Ce type d’impact négatif peut se produire sans la nécessité d’un coaching spécifique, voire pire, sans que personne ne s’en rende compte. Les techniques de recherche ne sont probablement pas une surface de pensées pour la plupart des gens une fois qu’ils pensent «à la formule de l’algorithme d’embauche». Cependant, les sélections programmées à ce stade très précoce de l’entonnoir de sélection sont très répandues. À titre d’exemple, l’outil mis au point par Amazon pour les femmes défavorisées n’était pas une ressource de sélection permettant d’évaluer de vrais candidats, mais plutôt un outil permettant de révéler les candidats indirects que les recruteurs devaient obtenir. Les algorithmes de localisation ne rejettent peut-être pas ouvertement les gens, mais comme l’a expliqué une érudite légitime, Pauline Kim, «ne pas informer les hommes et les femmes des possibilités d’emploi est vraiment un obstacle efficace» pour les personnes à la recherche d’une carrière. Ces outils peuvent bien ne pas toujours générer des lignes de force dystopiques, mais ils jouent néanmoins un rôle important pour déterminer qui peut accéder au processus de sélection par quelque moyen que ce soit.

Comments are closed.